
Rendering ground truth eye images
Lech Świrski & Neil Dodgson

Motivation
When evaluating eye tracking algorithms, a recurring issue is
what metric to use and what data to compare against. For a
proper evaluation, the results of the algorithms should be com-
pared against a ground truth dataset, however it is not obvious
where this data should come from, or how true it really is.

We wanted to create a system for obtaining ground truth data
which can produce a large amount of high-quality ground-
truth data, which allows full control over the parameters of the
system, and which doesn’t require much effort to use.

Using real images does not offer enough control over the sys-
tem, and requires manual labelling, which is time consuming
and may include human bias. However, current simulation ap-
proaches, such as artificial eyes or rendered eyes, do not model
the parts of the head surrounding the eye, such as the eyelids,
eyelashes, and skin, which limits their use when evaluating im-
age processing algorithms.

Our solution
To create a more realistic simulation, we built a head model
which includes the eye and surrounding facial structure. We
then used Blender to render this model with photorealistic
lighting, reflections and refractions.

Using a modern computer graphics system allows us to create
realistic image input for a gaze estimator, while still allowing
the user to have full control over parameters such as the gaze
direction, camera position, and lighting.

Scripting
We provide a simple Python scripting interface to our system,
which allows the user to easily render large amounts of ground-
truth data with varying parameters with minimal effort. All the
images in this poster were generated using this interface.

Parameters
Our interface gives the user control over many parameters:

• Pupil size
• Cornea refractive index
• Eye radius, position and orientation
• Eyelid position (how closed the eye is)
• Iris texture
• Cornea refractive index
• Pupil dilation
• Camera position and orientation
• Camera focal length (in pixels)
• Camera F-number (for depth of field)
• Image size (in pixels)
• Lights (position, orientation, view angle, size and intensity)

Ground truth calculation
Our model uses similar parameters to Böhme et al.[1], which
means that we can pass our parameters into their MATLAB
simulation framework.

Using the same parameters as Böhme et al. allows us to use an
existing, proven geometric model, to provide subpixel-accurate
locations for the pupil contour and glints as the ground truth
data for our rendered images. All image annotations in this
poster were calculated using Böhme et al.’s simulation frame-
work, with the parameters that were passed into our system.

Discussion
We have created a system which creates realistic, synthetic
ground truth images for eye tracker evaluation, which is com-
patible with an existing geometric simulation framework.

Our system gives the user full control over many parameters
which are important when evaluating eye tracking algorithms,
but achieves a level of realism beyond that of previous simula-
tion work. While we do not claim to be indistinguishable from
real images, we believe that we have achieved a level of realism
sufficient for convincing evaluation of image-based algorithms.

References
[1] Böhme, M., Dorr, M., Graw, M., Martinetz, T., and Barth, E.
2008. A Software Framework for Simulating Eye Trackers. In
Proc. ETRA

http://www.cl.cam.ac.uk/research/rainbow/projects/eyerender

Existing Work
There have been many approaches to obtaining ground-truth data for eye tracker evaluation, however these can mostly be catego-
rised into one of the following four categories, each with their own advantages and disadvantages:

Our model (left), and the same parameters in Böhme
et al.’s MATLAB simulation framework (right)

Our head model, which includes eyes and surrounding facial features.

An image of a real eye (left), and an image rendered using our model (right).
The model parameters were set manually to match the real image.

Manual labelling

+ Uses images of real eyes
− Takes time and effort to collect,

may include labeller’s bias

Artificial eyes

+ Control over position,
real camera

− Specialised equipement,
difficult to make realistic

Rendered eyes

+ Full control
− Difficult to make realistic

Figure 1: Eye model used in the simulation framework. The mean-
ing of the various parameters is explained in Section 2.1.

gaze estimation is where most of the problems lie that are particu-
lar to eye tracking; in contrast, the image analysis step usually uses
proven existing techniques.

We will now describe in detail how the individual components of
the system are modelled. We will also describe the simplifications
we have made, i.e. which aspects of the system are not modelled.

2.1 Eye

To specify the relative positions of the components of the eye, we
use an eye coordinate system, whose origin lies at the centre of
rotation of the eyeball. Within this coordinate system, we model
the following components:

Cornea This is modelled as a spherical cap with a radius of
rcornea, a centre of curvature ccornea lying on the optical axis of
the eye, and a cap height of hcornea (see Figure 1). (The numerical
values for these parameters and others that follow are taken from
the standard eye in Boff and Lincoln [1988, Section 1.210].)

The corneal surface plays a role in two effects that are relevant for
eye tracking:

Reflection The cornea acts as a spherical mirror in which reflections
of the light sources – the so-called corneal reflexes (CRs) or glints –
are observed. Reflection at the surface of the cornea follows the law
of reflection (angle of incidence equals angle of reflection [Forsyth
and Ponce 2002], see Figure 2):

c − x

�c − x�2

· n =
l − x

�l − x�2

· n

where l is the position of the light source, c is the position of
the camera (from where the reflection is observed), x is the po-
sition on the corneal surface where the ray is reflected, and n =

x−ccornea

�x−ccornea�2
is the surface normal at x. In addition, c, l, x, and

ccornea must be coplanar. Together with the constraint that x should
lie on the surface of the cornea, i.e. �x − ccornea�2 = rcornea, on
the half-sphere facing c, x is uniquely determined.

We find x by noting that it is constrained to the half-circle formed
by intersecting the corneal half-sphere facing cwith the plane given
by c, l, and ccornea. We use a one-dimensional root-finder to find
the solution for x that satisfies the reflection equation under these
constraints.

Figure 2: Reflection of a ray from the light source l at a point x on
the surface of the cornea towards the camera c. n: surface normal;
ccornea: centre of corneal curvature.

Figure 3: Refraction of a ray from the pupil boundary point b at a
point x on the surface of the cornea towards the camera c. n: sur-
face normal; ccornea: centre of corneal curvature; θ1, θ2: angles
of incident and refracted ray with the surface normal.

After the point of reflection x has been found, we check to see if
it actually lies within the boundaries of the cornea (i.e. within the
spherical cap). If not, no CR is generated.

Refraction The observed image of the pupil is distorted by refrac-
tion at the corneal surface (see Figure 3). This is governed by
Snell’s law [Forsyth and Ponce 2002]:

n1 sin θ1 = n2 sin θ2,

where θ1 is the angle between the incident ray and the surface nor-
mal, θ2 is the angle between the refracted ray and the surface nor-
mal, and n1 and n2 are the indices of refraction of the twomaterials.

Given a point b on the pupil border, we wish to find the location x

on the corneal surface where an incident ray from b is refracted in
such a way that it passes into the camera at c. Similar to the case of
reflection, we note that c, b, ccornea and x are coplanar and that x
must lie on the half-sphere facing c, giving a unique solution for x.
Again, we use a one-dimensional root finder to find x; if the point
of refraction that is found does not lie within the boundaries of the
cornea, no image is generated for the pupil border point.

Pupil The pupil boundary is modelled as a circle of radius rpupil

lying in a plane perpendicular to the optical axis with its centre at
cpupil on the optical axis.

252

Geometric models

+ Full control
− Doesn’t help evaluate

image-analysis algorithms

import eyemodel

with eyemodel.Renderer() as r:
 r.eye_target = [0, -1000, 0]
 r.camera_position = [20, -50, -10]
 r.camera_target = [0, -r.eye_radius, 0]
 r.eye_closedness = 0.2

 r.lights = [
 eyemodel.Light(
 location = [15, -50, -10],
 target = r.camera_target)
 eyemodel.Light(
 location = [25, -50, -10],
 target = r.camera_target)
]

 r.render(“example.png”)

An image of a partially closed eye with two lights shining on it,
rendered by our system (left) and the code used to render it (right)

A pupil tracking algorithm will output ellipses, but it is not obvious
how to evaluate this output in an easy and unbiased way.

Images created by our system showing varying parameters, such as iris
texture, eyelid position, pupil radius and corneal index of refraction.

